初等函数在定义域内一定连续吗?
的有关信息介绍如下:初等函数在定义域内不一定连续。
初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的;
对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。
证明方法
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
设函数f(x)的定义域为D,区间I包含于D,如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。