统计学中,如何区分大样本z和小样本t
的有关信息介绍如下:总体标准差用大样Z。如果不知道总体标准差,只知道样本标准差就只能用t检定了,一个是总体,一个是总体中抽部分样品,30是指总体非正态情况下,抽样需超过30,才能根据中心极限法保证计算的准确性。
区别一:z检验适用于变量符合z分布的情况,而t检验适用于变量符合t分布的情况;
区别二:t分布是z分布的小样本分布,即当总体符合z分布时,从总体中抽取的小样本符合t分布,而对于符合t分布的变量,当样本量增大时,变量数据逐渐向z分布趋近;
区别三:z检验和t检验都是均值差异检验方法,但t分布逐渐逼近z分布的特点,t检验的运用要比z检验更广泛,因为大小样本时都可以用t检验,而小样本时z检验不适用。SPSS里面只有t检验,没有z检验的功能模块。
扩展资料:
在大样本方法的使用中,一般都存在此问题。但由于数学上的困难,使用的许多大样本方法中,通常很少有有效的误差估计,这是大样本方法的弱点。然而它仍有重要的理论和实际意义:
它不仅提供了一批可供选用的统计方法,而且,经验证明,当一个统计方法不具备某些基本的大样本性质(如相合性)时,常常也很难有良好的小样本性质。评价一个统计方法的优良性时,大样本性质是不可忽视的。
参考资料来源:百度百科-大样本统计