您的位置首页百科知识

抽屉原理是什么重要原理

抽屉原理是什么重要原理

的有关信息介绍如下:

抽屉原理是什么重要原理

抽屉原理一、 知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k= (当n能整除m时)〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、 应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树