所有图形的面积,体积,表面积公式是什么?
的有关信息介绍如下:圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径 =r(l-b)/2 + bh/2 α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径 =π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴 二维图形 下面是一些二维图形的周长与面积公式。 圆: 半径= r 直径d=2r 圆周长= 2πr =πd 面积=πr2 (π=3.1415926…….) 椭圆: 面积=πab a与b分别代表短轴与长轴的一半。 矩形: 面积= ab 周长= 2a+2b 平行四边形(parallelogram): 面积= bh = ab sinα 周长= 2a+2b 梯形: 面积= 1/2h (a+b) 周长= a+b+h (secα+secβ) 正n边形: 面积= 1/2nb2 cot (180°/n) 周长= nb 四边形(i): 面积= 1/2ab sinα 四边形(ii): 面积= 1/2 (h1+h2) b+ah1+ch2回答者: 370116 - 魔神 十七级 11-2 15:10我来评论>>评价已经被关闭 目前有 0 个人评价 好50% (0) 不好50% (0) 相关内容?? 平面图形和立体图形体积表面积 ?? 体积面积计算公式 ?? 谁有MBA数学公式大全? ?? 请问有谁知道几何效率和体积及表面积的公式和计算方法呀 ?? 一些数学的体积和表面积计算公式 查看同主题问题:图形 表面积 表面积 体积 其他回答 共 1 条圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称 符号 周长C和面积S 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径 =r(l-b)/2 + bh/2 α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径 =π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴 二维图形 下面是一些二维图形的周长与面积公式。 圆: 半径= r 直径d=2r 圆周长= 2πr =πd 面积=πr2 (π=3.1415926…….) 椭圆: 面积=πab a与b分别代表短轴与长轴的一半。 矩形: 面积= ab 周长= 2a+2b 平行四边形(parallelogram): 面积= bh = ab sinα 周长= 2a+2b 梯形: 面积= 1/2h (a+b) 周长= a+b+h (secα+secβ) 正n边形: 面积= 1/2nb2 cot (180°/n) 周长= nb 四边形(i): 面积= 1/2ab sinα 四边形(ii): 面积= 1/2 (h1+h2) b+ah1+ch2