鸡兔同笼解题方法
的有关信息介绍如下:鸡兔同笼,是中国古代著名趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点 鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔? 算这个有个最简单的算法。 (总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 假设法 假设全是鸡:2×35=70(条) 鸡脚比总脚数少:94-70=24 (条) 少算的脚数:4-2=2(条) 兔:24÷2=12 (只) 鸡:35-12=23(只) 方程法 一元一次方程 解:设兔有x只,则鸡有(35-x)只。 4x+2(35-x)=94 4x+70-2x=94 2x=94-70 2x=24 x=24÷2 x=12 鸡:35-12=23(只) 或 解:设鸡有x只,则兔有(35-x)只。 2x+4(35-x)=94 2x+140-4x=94 2x+140-4x+4x=94+4x 2x+140-2x=94+4x-2x 2x=46 x=23 兔:35-23=12(只) 答:兔子有12只,鸡有23只。 注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。 二元一次方程 解:设鸡有x只,兔有y只。 x+y=35 2x+4y=94 (x+y=35)×2=2x+2y=70 (2x+2y=70)-(2x+4y=94)=(2y=24) y=12 把y=12代入(x+y=35) x+12=35 x=35-12(只) x=23(只)。 答:兔子有12只,鸡有23只。 抬腿法 方法一 假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。 方法二 假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。 方法三 我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。