傅里叶级数展开公式是什么?
的有关信息介绍如下:傅里叶展开式(Fourier expansion)是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f (x),则此级数称为f(x)的傅里叶展开式。
傅里叶展开式是一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。而傅里叶级数得名于法国数学家约瑟夫·傅里叶(1768年–1830年),他提出任何函数都可以展开为三角级数。此前数学家如拉格朗日等已经找到了一些非周期函数的三角级数展开,而认定一个函数有三角级数展开之后,通过积分方法计算其系数的公式,欧拉、达朗贝尔和克莱罗早已发现。
傅里叶的工作得到了丹尼尔·伯努利的赞助。傅里叶介入三角级数用来解热传导方程,其最初论文在1807年经拉格朗日、拉普拉斯和勒让德评审后被拒绝出版,他被称为傅里叶逆转定理的理论后来发表于1820年的《热的解析理论》中。将周期函数分解为简单振荡函数的总和的最早想法,可以追溯至公元前3世纪古代天文学家的均轮和本轮学说。